A primer of Perron–Frobenius theory for matrix polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A primer of Perron–Frobenius theory for matrix polynomials

We present an extension of Perron–Frobenius theory to the spectra and numerical ranges of Perron polynomials, namely, matrix polynomials of the form L(λ) = Iλ − Am−1λm−1 − · · · − A1λ− A0, where the coefficient matrices are entrywise nonnegative. Our approach relies on the companion matrix linearization. First, we recount the generalization of the Perron–Frobenius Theorem to Perron polynomials ...

متن کامل

Zeros of Polynomials and their Applications to Theory: A Primer

Problems in many different areas of mathematics reduce to questions about the zeros of complex univariate and multivariate polynomials. Recently, several significant and seemingly unrelated results relevant to theoretical computer science have benefited from taking this route: they rely on showing, at some level, that a certain univariate or multivariate polynomial has no zeros in a region. Thi...

متن کامل

The Analytic Theory of Matrix Orthogonal Polynomials

We survey the analytic theory of matrix orthogonal polynomials. MSC: 42C05, 47B36, 30C10 keywords: orthogonal polynomials, matrix-valued measures, block Jacobi matrices, block CMV matrices

متن کامل

Higher numerical ranges of matrix polynomials

 Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...

متن کامل

Generalized numerical ranges of matrix polynomials

In this paper, we introduce the notions of C-numerical range and C-spectrum of matrix polynomials. Some algebraic and geometrical properties are investigated. We also study the relationship between the C-numerical range of a matrix polynomial and the joint C-numerical range of its coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2004

ISSN: 0024-3795

DOI: 10.1016/j.laa.2003.12.026